Dominant Cross-Reactive B Cell Response during Secondary Acute Dengue Virus Infection in Humans

Abstract
The four serotypes of dengue virus (DENV) cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Severe disease has been associated with heterotypic secondary DENV infection, mediated by cross-reactive antibodies (Abs) and/or cross-reactive T cells. The role of cross-reactive immunity in mediating enhanced disease versus cross-protection against secondary heterotypic DENV infection is not well defined. A better understanding of the cross-reactive immune response in natural infections is critical for development of safe and effective tetravalent vaccines. We studied the B cell phenotype of circulating B cells in the blood of pediatric patients suspected of dengue during the 2010–2011 dengue season in Managua, Nicaragua (n = 216), which was dominated by the DENV-3 serotype. We found a markedly larger percentage of plasmablast/plasma cells (PB/PCs) circulating in DENV-positive patients as compared to patients with Other Febrile Illnesses (OFIs). The percentage of DENV-specific PB/PCs against DENV-3 represented 10% of the circulating antibody-producing cells (ASCs) in secondary DENV-3 infections. Importantly, the cross-reactive DENV-specific B cell response was higher against a heterotypic serotype, with 46% of circulating PB/PCs specific to DENV-2 and 10% specific to DENV-3 during acute infection. We also observed a higher cross-reactive DENV-specific IgG serum avidity directed against DENV-2 as compared to DENV-3 during acute infection. The neutralization capacity of the serum was broadly cross-reactive against the four DENV serotypes both during the acute phase and at 3 months post-onset of symptoms. Overall, the cross-reactive B cell immune response dominates during secondary DENV infections in humans. These results reflect our recent findings in a mouse model of DENV cross-protection. In addition, this study enabled the development of increased technical and research capacity of Nicaraguan scientists and the implementation of several new immunological assays in the field. Dengue is the most common mosquito-borne viral infection of humans, with half the world's population at risk for infection. Four different dengue virus serotypes (DENV-1 to -4) can cause the disease, which can be either inapparent or present with flu-like symptoms (Dengue Fever), also known as “breakbone fever”. In a number of cases, the disease can be more severe and sometimes fatal, with signs of bleeding and vascular leakage leading to shock (Dengue Hemorrhagic Fever/Dengue Shock Syndrome). Severe disease has been associated with secondary sequential DENV infections, i.e., infection with a second DENV serotype different from the serotype causing the first infection. No specific treatment or vaccine is available. Understanding how the human immune response develops during a natural infection can be beneficial for future vaccine studies and trials. B cells are a subset of cells that produce antibodies and are thus essential in the response to natural infections and vaccines. We show here that during secondary DENV infections in humans, the B cell immune response to a previous infecting DENV serotype is stronger than the response against the current infecting serotype. In addition, this study allowed the development of research capacity and implementation of new immunological assays in Nicaragua.

This publication has 59 references indexed in Scilit: