Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles.

Abstract
The cerebral vasodilator response induced by topical nitroglycerin and nitroprusside was examined in cats equipped with cranial windows for the observation of the cerebral microcirculation. In cats subjected to chronic unilateral trigeminal ganglionectomy, the vasodilator responses to nitroprusside and nitroglycerin were markedly depressed on the denervated side. Application of a selective calcitonin gene-related peptide (CGRP) antagonist [CGRP(8-37)] on the innervated side reduced the response to nitrodilators to the same extent as seen on the denervated side. The vasodilator response to acetylcholine was unaffected by trigeminal ganglionectomy. CGRP(8-37) almost abolished the vasodilator response to nitroglycerin and sodium nitroprusside and to CGRP, but did not affect the response to adenosine or to adenosine diphosphate. Pretreatment with LY83583, a drug that lowers cyclic GMP levels, diminished the vasodilation to CGRP and to nitroprusside but not to adenosine. We conclude that the nitrovasodilators activate sensory fibers to release CGRP, which in turn relaxes cerebral vascular smooth muscle by activating guanylate cyclase. Hence, nitrovasodilators possess a novel mechanism of action within the cephalic circulation which may explain both the occurrence of vasodilation and headache.