Predator-mediated, non-equilibrium coexistence of tree-hole mosquitoes in southeastern North America

Abstract
Mosquito populations in tree holes in northern Florida (30.6° N lat.), USA are held below their carrying capacities by a self-limiting, cannabalistic predator. Within tree holes, extinctions and reinvasions are common; in the system as a whole, extinctions and immigrations occur without regard to community composition, tree-hole size or stability, or average number of species present. Little, if any, density-dependent development takes place. There is no evidence that the community ever reaches equilibrium, that competition is taking place, or that competition has been an important factor structuring this mosquito community. Rather, examination of related species in the same genera suggests that the principal determinants of their coexistence relate to the adaptations already possessed by each species at the time of their first encounter. Thus, unless experimentally demonstrated or reasonably inferred from circumstantial evidence, competition and coevolved niche shifts cannot be invoked to explain the coexistence of a diversity of species within a habitat type, no matter how circumscribed or discrete that habitat.