Abstract
Residual stresses in components are an important issue in most manufacturing processes, as they influence the performance of the final part. Regarding hot forming processes there is a great potential of defining a targeted residual stress state, due to numerous adjustment parameters like deformation state or temperature profile. In order to ensure appropriate numerical modelling of resulting residual stresses in a thermomechanical process, comprehensive material data regarding phase transformation are required. This paper presents an experimental-numerical procedure to efficiently determine time-temperature-transformation diagrams for cooling simulations after hot forming. The transformation behaviour of the steel alloys 42CrMo4 and 100Cr6 is determined by experiments as well as FE-simulations. Finally, the simulation model is validated by dilatometric experiments and metallographic investigations.