Abstract
The effect of impurities on the surface and interfacial melting of ice is investigated in the context of the Derjaguin-Landau-Verwey-Overbeek theory by calculating van der Waals and Coulombic interactions within interfacial solution films. At high temperatures, the classical solute effect dominates the melting behavior. However, depending on the amount of impurity, as temperature decreases the slope of the film-thickness versus temperature curve changes in a manner that depends on the relative strengths of van der Waals and Coulombic interactions. The results explain the wide range of experimental discrepancies and hence impact a host of environmental phenomena.