Caspase-1 activation of caspase-6 in human apoptotic neurons

Abstract
Active caspase-6 (Csp-6) induces cell death in primary cultures of human neurons and is abundant in the neuropathological lesions of Alzheimer's disease. However, the mode of Csp-6 activation is not known. Here, we show that the Csp-1 inhibitor, Z-YVAD-fmk specifically prevents activation of Csp-6 and cell death in human neurons. A transient increase in Csp-1-like activity and an increase in the p23Csp-1 subunit occur early after serum deprivation. Recombinant active Csp-1 (R-Csp-1) cleaves recombinant and neuronal pro-Csp-6 in vitro resulting in Csp-6 activity. However, R-Csp-1 does not induce cell death when microinjected in human neurons despite the inhibition of serum-deprivation induced cell death with a Csp-1 dominant negative construct. These results show that Csp-1 is an upstream positive regulator of Csp-6-mediated cell death in primary human neurons. Furthermore, these results suggest that the activation of Csp-1 must be accompanied by an apoptotic insult to induce Csp-6-mediated cell death.