Abstract
The mechanisms underlying formation of the basic network of the nervous system are of fundamental interest in developmental neurobiology. During the wiring of the nervous system, newborn neurons send axons that travel long distances to their targets. These axons are directed by environmental cues, known as guidance cues, to their correct destinations. Through extensive studies in vertebrates and invertebrates many of the guidance cues and their receptors have been identified. Recently, guidance molecules have been suggested to have important roles in pathological conditions of the nervous system. Mutations in guidance receptors have been associated with hereditary neurological disorders, and deregulation of guidance cues might be associated with predisposition to epilepsy. In addition, it was suggested that guidance molecules play roles in the ability of the adult nervous system to recover and repair after injury. Thus, molecules that were first discovered as “developmental cues” are now emerging as important factors in neurological disease and injury in the adult. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007