A Mixed-Signal Approach Towards Linear and Efficient $N$-Way Doherty Amplifiers

Abstract
A mixed-signal approach for the design and testing of high-performance N-way Doherty amplifiers is introduced. In support of this, an analysis of N-way power-combining networks is presented-in particular, their optimum design-by examining the relationship between the drive conditions of the active devices and input power. This analysis makes no prior assumption on the network topology and facilitates free-to-choose levels for the high-efficiency power back-off points. By comparing the results of this analysis with prior work, it is shown that very specific drive conditions apply to traditional three-way Doherty amplifier implementations to obtain simultaneously high-efficiency and high-linearity operation. To support these conclusions, a 15-W three-way Doherty amplifier was constructed using Philips GEN4 LDMOS devices featuring three separate inputs to independently drive the main and peaking devices. By testing this three-way amplifier with a custom-built measurement setup, capable of providing multiple digitally controlled coherent RF input signals with high spectral purity, a unique flexible amplifier concept is created resulting in a record-high efficiency for LDMOS-based Doherty amplifiers over a 12-dB back-off power range

This publication has 14 references indexed in Scilit: