Creep Relaxation of an Elastic–Perfectly Plastic Hemisphere in Fully Plastic Contact

Abstract
A set of finite element simulations was performed to analyze the creep behavior of an elastic–perfectly plastic hemisphere in contact with a rigid flat. This study focuses on the time-dependent stress relaxation of a fully plastic asperity. Assuming a Garofalo (hyperbolic sine) type material creep law, the asperity shows two distinct phases of relaxation. In the first phase, the asperity creeps with an accelerated creep rate and shows a contact area increase similar to that of a cylindrical geometry. In the second phase, no contact area change can be measured and the asperity creeps with a slower rate. Empirical evolution laws for the asperity creep behavior are presented, analyzing the influence of both material and geometrical parameters. The results are interpreted in terms of transient friction.