An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes

Abstract
Biologic meshes are being used with increasing frequency to repair contaminated abdominal wall defects despite high long-term recurrence and infection rates associated with their use. Recent clinical reports describing the success of lightweight, macroporous synthetic meshes in contaminated ventral hernia repairs have led some surgeons to challenge the belief that synthetics are contraindicated in contaminated fields. We aimed to determine whether a frequently used biologic mesh (Strattice(TM)) is more resistant to bacterial colonization than macroporous synthetic mesh (Parietex(TM) Progrip(TM)) after inoculation with two common pathogens. Rats (n = 48) were implanted subcutaneously with Strattice(TM) or Progrip(TM). Meshes were inoculated with sterile saline or a suspension containing 10(6) colony-forming units of Staphylococcus aureus or Escherichia coli prior to wound closure (n = 8 per subgroup). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Progrip(TM) demonstrated superior bacterial clearance compared to Strattice(TM) (E. coli, 88 vs. 17% clearance, p = 0.03; S. aureus, 75 vs. 50%, p = 0.61; combined bacterial strains, 81 vs. 36%, p = 0.02; respectively). In the Strattice(TM) group, severely degraded meshes were observed in 100% of animals inoculated with E. coli (but 0% inoculated with S. aureus). In contrast, all Progrip(TM) meshes remained intact regardless of inoculum. Scores for neovascularization were higher in the synthetic group irrespective of contamination (p < 0.05). Biologic meshes may not be more resistant to bacterial colonization than reduced-weight synthetics, and their resistance may differ in response to different pathogens. The routine use of biologics in contaminated ventral hernia repair should be questioned, particularly in the presence of E. coli.