Enantiospecific Response in Cross-Polarization Solid-State Nuclear Magnetic Resonance of Optically Active Metal Organic Frameworks

Abstract
We report herein on a NMR-based enantiospecific response for a family of optically active metal-organic frameworks. Cross-polarization of the 1H - 13C couple was performed and the intensities of the 13C nuclei NMR signals were measured to be different for the two enantiomers. In a direct-pulse experiment, which prevents cross-polarization, the intensity difference of the 13C NMR signals of the two nanostructured enantiomers vanished. This result is due to changes of the nuclear spin relaxation times due to the electron spin spatial asymmetry induced by chemical bond polarization involving a chiral center. These experiments put forward on firm grounds that the Chiral-Induced Spin Selectivity effect, which induces chemical bond polarization in the J-Coupling, is the mechanism responsible for the enantiospecific response. The implications of this finding for the theory of this molecular electron spin polarization effect and the development of quantum bio-sensing and quantum storage devices are discussed.
Funding Information
  • Ministerio de Ciencia e Innovaci??n (PGC2018-102052-A-C22, PGC2018-102052-B-C21)
  • European Commission (590 702694)
  • Eusko Jaurlaritza (IT1254-19)
  • Euskal Herriko Unibertsitatea (GIU 17/13 project)
  • Agencia Espa??ola de investigaci??n (PGC2018-097529-B-I00)