Energy-Discriminating Gadolinium K-Edge X-ray Computed Tomography System

Abstract
An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type of detector using cadmium telluride (CdTe). CT is performed by repeated translations and rotations of an object. Penetrating X-ray photons from the object are detected by a CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a countercard. To perform energy discrimination, a low-dose-rate X-ray generator for photon counting was developed. Its maximum tube voltage and minimum tube current were 110 kV and 1 µA, respectively. In energy-discriminating CT, the tube voltage and tube current were 100 kV and 20 µA, respectively, and the X-ray intensity was 2.98 µGy/s at a distance of 1.0 m from the source and a tube voltage of 100 kV. The demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond the gadolinium K-edge energy of 50.3 keV.