Abstract
Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) D(2) is abundantly produced in the brain and regulates the sleep response. Moreover, PGD(2) is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with PGD(2) significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that PGD(2) treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, PGD(2) may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.