The major immunogenic epitopes of Epstein-Barr virus (EBV) nuclear antigen 1 are encoded by sequence domains which vary among nasopharyngeal carcinoma biopsies and EBV-associated cell lines.

Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is a protein expressed consistently in EBV-infected cells and EBV-associated malignant tissues. A panel of monoclonal antibodies (MAbs) was generated against the C terminus of EBNA-1 and evaluated for the detection of EBNA-1 in different cell lines. The epitopes recognized were mapped. Since sequence variations of EBNA-1 have been reported in nasopharyngeal carcinoma (NPC) tissues and in infected healthy individuals, the ability of these MAbs to recognize a recombinant protein derived from an NPC biopsy was also analysed. MAb 4H11 appeared to react with EBNA-1 sequences from different sources, whereas MAbs 5C11, 5F12 and 8F6 failed to recognize a recombinant EBNA-1 protein cloned from an NPC patient. Using different recombinant EBNA-1 fragments in an immunoblot format, this study demonstrates that the domain bounded by amino acids 408 and 498 is very immunogenic in mice in that epitopes in this region are recognized by various MAbs. Amino acid sequences of EBNA-1 were also deduced from nucleotide sequences amplified from three Burkitt's lymphoma cell lines, two spontaneous lymphoblastoid cell lines, two NPC biopsies and one NPC hybrid cell line, NPC-KT, and compared to the sequence from B95-8. The amino acid sequence of EBNA-1 in Akata is almost identical to that in an NPC biopsy, except for amino acid 585. The results of this study indicate that the immunogenic epitopes of EBNA-1 are highly variable.