Association of Insulin Receptor Substrate Proteins with Bcl-2 and Their Effects on Its Phosphorylation and Antiapoptotic Function

Abstract
Insulin receptor substrate (IRS) proteins are docking proteins that couple growth factor receptors to various effector molecules, including phosphoinositide-3 kinase, Grb-2, Syp, and Nck. Here we show that IRS-1 associates with the loop domain of Bcl-2 and synergistically up-regulates antiapoptotic function of Bcl-2. IRS-2 but not IRS-3 binds to Bcl-2, and IRS-1 associates with Bcl-XL but not with Bax or Bik. Overexpression of IRS-1 suppresses phosphorylation of Bcl-2 induced by stimulation with insulin, and the hypophosphorylation may lead to its enhanced antiapoptotic activity. The binding site for Bcl-2 is located on the carboxyl half-domain of IRS-1. IRS-3, which lacks the corresponding region, dominant-negatively abrogates the survival effects of IRS-1 and Bcl-2. For the antiapoptotic activity of IRS-1, binding to Bcl-2 is more critical than activating phosphoinositide-3 kinase. Our results indicate that IRS proteins transmit signals from the insulin receptor to Bcl-2, thus regulating cell survival probably through regulating phosphorylation of Bcl-2.