Modal combination rules for multicomponent earthquake excitation

Abstract
A response spectrum method for dynamic analysis of linear structures subjected to multicomponent seismic input is developed. The method is based on elementary concepts of stationary random vibration and assumes the existence of a set of principal directions along which components of ground motion are uncorrelated. Modal combination rules in terms of ground response spectra are developed for the mean and standard deviation of peak responses and for rootmean-square responses. These rules account for correlations between modal responses of the structure, as well as correlations between the input components. When the position of principal directions is unknown, two alternative rules are proposed: one uses the direction which is most critical for the response quantity of interest, and the other considers the direction as a random variable. The proposed method is simple for practical implementation and gives more accurate results than other existing methods.

This publication has 9 references indexed in Scilit: