Room-Temperature Quantum Hall Effect in Graphene

Abstract
The quantum Hall effect (QHE), one example of a quantum phenomenon that occurs on a truly macroscopic scale, has attracted intense interest since its discovery in 1980 and has helped elucidate many important aspects of quantum physics. It has also led to the establishment of a new metrological standard, the resistance quantum. Disappointingly, however, the QHE has been observed only at liquid-helium temperatures. We show that in graphene, in a single atomic layer of carbon, the QHE can be measured reliably even at room temperature, which makes possible QHE resistance standards becoming available to a broader community, outside a few national institutions.