Comparative structural and hemodynamic analysis of vascular trees

Abstract
The availability of detailed three-dimensional images of vascular trees from mammalian organs provides a wealth of essential data for understanding the processes and mechanisms of vascular patterning. Using this detailed geometric data requires the ability to compare individual representations of vascular trees in statistically meaningful ways. This article provides some comparisons of geometry and also of simulated hemodynamics, enabling the identification of similarities and differences among 10 individual specimens (5 placenta specimens and 5 lung specimens). Similar comparisons made with a series of models (starting with the simplest and increasing in complexity) enable the identification of essential features that are needed to account for the patterns and function of vascular arborization.