Rapid β-Adrenergic Modulation of Cardiac Calcium Channel Currents by a Fast G Protein Pathway

Abstract
Beta-Adrenergic agonists activate the G protein, Gs, which stimulates cardiac calcium currents by both cytoplasmic, indirect and membrane-delimited, direct pathways. To test whether beta-adrenergic agonists might use both pathways in the heart, isoproterenol was rapidly applied to cardiac myocytes, resulting in a biphasic increase in cardiac calcium channel currents that had time constants of 150 milliseconds and 36 seconds. beta-Adrenergic antagonists of a G protein inhibitor blocked both the fast and slow responses, whereas the adenylyl cyclase activator forskolin produced only the slow response. The presence of a fast pathway in the heart can explain what the slow pathway cannot account for: the ability of cardiac sympathetic nerves to change heart rate within a single beat.