Abstract
Neutron diffraction provides one of the few means of mapping residual stresses deep within the bulk of materials and components. This article reviews the basic scientific methodology by which internal strains and stresses are inferred from recorded diffraction peaks. Both conventional angular scans and time-of-flight measurements are reviewed and compared. Their complementarity with analogous synchrotron X-ray methods is also highlighted. For measurements to be exploited in structural integrity calculations underpinning the safe operation of engineering components, measurement standards have been defined and the major findings are summarised. Examples are used to highlight the unique capabilities of the method showing how it can provide insights ranging from the basic physics of slip mechanisms in hexagonal polycrystalline materials, through the materials optimisation of stress induced transformations in smart nanomaterials, to the industrial introduction of novel friction welding processes exploiting stress residual measurements transferred from prototype sub-scale tests to the joining of full-scale aeroengine assemblies. To cite this article: P.J. Withers, C. R. Physique 8 (2007). La diffraction de neutrons est une des rares techniques permettant de cartographier en profondeur les contraintes résiduelles dans les matériaux. Cet article présente une revue des bases de la méthodologie scientifique qui permet de déduire les déformations et contraintes internes des mesures de pics de diffraction. Les méthodes conventionnelles par balayage en fonction de l'angle et les mesures par temps de vol sont décrites et comparées. On insiste sur leur complémentarité avec les méthodes analogues utilisant le rayonnement synchrotron. Pour que ces mesures puissent être utilisées dans les calculs d'intégrité structurale nécessaires à une utilisation sûre des composants mécaniques, une méthodologie standard a été définie et est résumée ici. Des exemples mettent en valeur le potentiel unique de la méthode, montrant comment elle permet d'obtenir des informations allant des mécanismes de base du glissement dans les matériaux hexagonaux polycristallins, à l'optimisation de matériaux par des transformations structurales induites par les contraintes, et à la validation industrielle des nouveaux procédés de soudage par friction appliqués aux assemblages de composants aéronautiques. Pour citer cet article : P.J. Withers, C. R. Physique 8 (2007).