Abstract
Selection against harmful mutations in large populations is studied assuming that the rate of fitness decrease grows with every new mutation added to a genome. Under this reasonable assumption (Mayr, 1970) the average fitness of a sexual population, without linkage between the loci, is higher, and the average equilibrium number of harmful mutations per individual lower, than in an asexual population. If a gamete contains on the average one or more new mutations, the resulting advantage of sexual reproduction and recombination seems to be sufficient to counterbalance the double advantage of parthenogenesis. Moreover, selection against harmful mutations is probably the most powerful factor preventing linkage disequilibrium even with epistatic interaction between the loci.