Mechanism of action of developmentally regulated sea urchin inhibitor of eIF‐4

Abstract
The developmentally regulated inhibitor of eIF-4 function found in unfertilized sea urchin eggs has been partially purified and its mechanism of action studied in vitro using purified recombinant eIF-4α and cell-free translation systems. The results demonstrate that although the phosphorylation of eIF-4α is necessary to promote protein synthesis, it is not sufficient to maintain all aspects of eIF-4 function. The egg inhibitor does not change eIF-4α phosphorylation state. During the blockage of initiation caused by the egg inhibitor, eIF-4α remains phosphorylated but accumulates in a 48S initiation intermediate. This suggests that the egg inhibitor functions by preventing the release of eIF-4α from the small ribosomal subunit. The characteristics of the inhibitor in a reticulocyte translation system demonstrate that eIF-4 activity is inhibited within 3–6 min. However, the inhibitor's characteristics in a mRNA-dependent translation system contrast with this. Preincubation with the inhibitor for 5–25 min prior to the addition of mRNA does not prevent endogenous eIF-4 from participating in translation but diminishes its ability to be reutilized, consistent with the accumulation of eIF-4α on the small ribosomal subunit. The ribosomal localization of the inhibitor suggests that it could prevent eIF-4α release by direct binding. The gradual inactivation of the inhibitor following fertilization indicates that it represents a component of a novel regulatory cascade that modulates eIF-4 activity.