Abstract
This paper shows that the load flow problem of a radial distribution system can be modeled as a convex optimization problem, particularly a conic program. The implications of the conic programming formulation are threefold. First, the solution of the distribution load flow problem can be obtained in polynomial time using interior-point methods. Second, numerical ill-conditioning can be automatically alleviated by the use of scaling in the interior-point algorithm. Third, the conic formulation facilitates the inclusion of the distribution power flow equations in radial system optimization problems. A state-of-the-art implementation of an interior-point method for conic programming is used to obtain the solution of nine different distribution systems. Comparisons are carried out with a previously published radial load flow program by R. Cespedes

This publication has 8 references indexed in Scilit: