Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions

Abstract
The bispectrum, which is an ensemble average of a product of three spectral components, is shown to be a very useful diagnostic tool in experimental studies of nonlinear wave interactions in random media. In particular, it is shown that the bicoherence spectrum may be used to discriminate between nonlinearly coupled waves and spontaneously excited waves and to measure the fraction of wave power due to the quadratic wave coupling in a self-excited fluctuation spectrum. Practical aspects of digital bispectral analysis techniques, such as estimation and statistical variability of the estimator, are also discussed. Finally, applications of bispectral analysis techniques in the analysis and interpretation of plasma fluctuation data are described.