Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Capripoxviruses

Abstract
Sheep pox (SP), goat pox (GP), and lumpy skin disease (LSD), caused by capripoxviruses (CaPVs), are economically important diseases of sheep, goats, and cattle, respectively. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of CaPVs. LAMP primers were designed to target a conserved gene encoding the poly(A) polymerase small subunit (VP39) of CaPVs. Hydroxynaphthol blue (HNB) was incorporated to monitor assay progress by color change from violet when negative to sky blue when positive, and results were verified by agarose gel electrophoresis. The LAMP assay was shown to be highly specific for CaPVs, with no apparent cross-reactivity to other related viruses (near neighbors) or viruses that cause similar clinical signs (look-a-like viruses). The performance of LAMP was compared to that of a highly sensitive quantitative real-time PCR (qPCR) assay. LAMP and qPCR exhibited similar analytical sensitivities, with limits of detection of 3 and 8 viral genome copies, respectively. Diagnostic specificity was assessed on 36 negative specimens, including swabs and EDTA blood from control sheep, goats, and cattle. Diagnostic sensitivity was assessed on 275 specimens, including EDTA blood, swabs, and tissues from experimentally infected sheep, goats, and cattle. Overall agreement on diagnostic test results between the two assays was 90 to 95% for specificity and 89 to 100% for sensitivity. The LAMP assay described in this report is simple to use, inexpensive, highly sensitive, and particularly well suited for the diagnosis of capripox in less well equipped laboratories and in rural settings where resources are limited.

This publication has 36 references indexed in Scilit: