Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor

Abstract
A comparative study of four different antibody immobilization techniques that are suitable for modification of surface plasmon resonance (SPR) chip (SPR-chip) is reported. Antibodies against human growth hormone (anti-HGH) were used as the model system. The evaluated SPR-chip modification techniques were (i) random immobilization of intact anti-HGH (intact-anti-HGH) via self-assembled monolayer (SAM) based on 11-mercaptoundecanoic acid (MUA); (ii) random immobilization of intact-anti-HGH within carboxymethyl dextran (CMD) hydrogel by direct covalent amine coupling technique; (iii) oriented coupling of intact-anti-HGH via Fc-fragment to protein-G layer assembled on SAM consisting of MUA (MUA/pG); (iv) oriented immobilization of fragmented anti-HGH antibodies (frag-anti-HGH) via their native thiol-groups directly coupled to the gold. To liberate these thiol groups, the intact-anti-HGH was chemically “divided” into two frag-anti-HGH fragments by chemical reduction with 2-mercaptoethylamine (2-MEA). Optimal concentration of 2-MEA for preparation of anti-HGH was 15 mM. The surface concentration of immobilized antibodies and the antigen binding capacity for all four differently modified SPR-chips was evaluated and compared. The maximum surface concentration of immobilized intact-anti-HGH was obtained by immobilizing the antibody within CMD-hydrogel. The maximal antigen binding capacity was obtained by SPR-chip based on intact-anti-HGH immobilized via MUA/pG. The immobilization based on application of frag-anti-HGH was found to be the most suitable for design of SPR-immunosensor for HGH detection, due to its sufficient antigen binding capacity, simplicity, and low cost in respect to the currently evaluated techniques.