Abstract
This study, through a new approach, presents a comprehensive mathematical model for correlating the interactive and higher order influences of drilling parameters on the delamination factor in drilling glass fiber reinforced plastic (GFRP) composites using response surface methodology. The purpose of this article is to investigate the influence of drilling parameters, such as cutting speed, feed, and point angle on delamination produced when drilling GFRP composite. The damage generated associated with drilling GFRP composites were observed, both at the entrance and exit during the drilling. The experiments are conducted based on Box—Behnken design. Empirical models are developed to correlate and predict the drilling parameters and delamination factor in drilling of GFRP. The developed models for delamination factor at entrance and exit are proposed that agree well with the experiment. The models can be utilized to select the level of drilling parameters. Thus time and cost were noticeably reduced.