Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis

Abstract
Claudin-3 (CLDN3) is a tight junction protein that is overexpressed in 90% of ovarian tumors. Previous in vitro studies have indicated that CLDN3 overexpression promotes the migration, invasion, and survival of ovarian cancer cells. Here, we investigated the efficacy of lipidoid-formulated CLDN3 siRNA in 3 different ovarian cancer models. Intratumoral injection of lipidoid/CLDN3 siRNA into OVCAR-3 xenografts resulted in dramatic silencing of CLDN3, significant reduction in cell proliferation, reduction in tumor growth, and a significant increase in the number of apoptotic cells. Intraperitoneal injection of lipidoid-formulated CLDN3 siRNA resulted in a substantial reduction in tumor burden in MISIIR/TAg transgenic mice and mice bearing tumors derived from mouse ovarian surface epithelial cells. Ascites development was reduced in CLDN3 siRNA-treated mice, suggesting the treatment effectively suppressed metastasis. Toxicity was not observed after multiple i.p. injections. Importantly, treatment of mice with nonimmunostimulatory 2′-OMe modified CLDN3 siRNA was as effective in suppressing tumor growth as unmodifed siRNA. These results suggest that lipidoid-formulated CLDN3 siRNA has potential as a therapeutic for ovarian cancer.