Abstract
Intracellular calcium concentration ([Ca2+]i)-dependent activation of myosin light chain kinase and its phosphorylation of the 20-kd light chain of myosin is generally considered the primary mechanism responsible for regulation of contractile force in arterial smooth muscle. However, recent data suggest that the relation between [Ca2+]i and myosin light chain phosphorylation is variable and depends on the form of stimulation. The dependence of myosin phosphorylation on [Ca2+]i has been termed the "[Ca2+]i sensitivity of phosphorylation." The [Ca2+]i sensitivity of phosphorylation is "high" when relatively small increases in [Ca2+]i induce a large increase in myosin phosphorylation. Conversely, the [Ca2+]i sensitivity of phosphorylation is "low" when relatively large increases in [Ca2+]i are required to induce a small increase in myosin phosphorylation. There are two proposed mechanisms for changes in the [Ca2+]i sensitivity of phosphorylation: Ca(2+)-dependent decreases in the [Ca2+]i sensitivity of phosphorylation induced by phosphorylation of myosin light chain kinase by Ca(2+)-calmodulin protein kinase II and agonist-dependent increases in the [Ca2+]i sensitivity of phosphorylation by inhibition of a myosin light chain phosphatase. I will review the proposed mechanisms responsible for the regulation of [Ca2+]i and the [Ca2+]i sensitivity of phosphorylation in arterial smooth muscle.

This publication has 75 references indexed in Scilit: