Monitoring of Thermal Energy Distribution in Abrasive Waterjet Cutting Using Infrared Thermography

Abstract
Thermal energy distribution in the workpiece cut with abrasive waterjet (AWJ) is analyzed using the technique of infrared thermography through isotherms and linescans. Variation in workpiece temperature with thermal conductivity and cutting conditions is studied. The feasibility of visualization of AWJ cutting mechanisms in opaque materials using infrared thermography is investigated. A novel technique of AWJ nozzle wear monitoring through infrared thermography is proposed. A comparative study of infrared thermography results with the readings of thermocouples and the two-dimensional moving line heat source model show a close correspondence indicating that infrared thermography is a good technique for the above application.