Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery

Abstract
A novel method of hydrothermal ammoniated treatment on the polyacrylonitrile (PAN)-based graphite felt for vanadium redox flow battery was developed. The graphite felt was treated in a Teflon-lined stainless steel autoclave for different time at 180 °C. The content of nitrogen in the PAN graphite felt changed from 3.803% to 5.367% by adjusting treatment time to 15 h in ammonia solution, while FT-IR results indicated that nitrogenous groups were introduced. The electrochemical properties of these graphite felts were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, as well as cell charge and discharge tests. The energy efficiency of the treated graphite felt reached 85% at a current density of 20 mA/cm2. The corresponding coulombic efficiency and voltage efficiency were 95.3% and 75.1%, respectively. The improvement of the electrochemical properties for the treated graphite felt might be attributed to the increase of polar nitrogenous groups of carbon fiber surface, which facilitated charge transfer between electrode and vanadium ions.