Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part II: Supercell and QLCS Tornado Environments

Abstract
A sample of 22 901 tornado and significant severe thunderstorm events, filtered on an hourly 40-km grid, was collected for the period 2003–11 across the contiguous United States (CONUS). Convective mode was assigned to each case via manual examination of full volumetric radar data (Part I of this study), and environmental information accompanied each grid-hour event from the hourly objective analyses calculated and archived at the Storm Prediction Center (SPC). Sounding-derived parameters related to supercells and tornadoes formed the basis of this investigation owing to the dominance of right-moving supercells in tornado production and the availability of supercell-related convective parameters in the SPC environmental archive. The tornado and significant severe thunderstorm events were stratified by convective mode and season. Measures of buoyancy discriminated most strongly between supercell and quasi-linear convective system (QLCS) tornado events during the winter, while bulk wind differences and storm-relative helicity were similar for both supercell and QLCS tornado environments within in each season. The larger values of the effective-layer supercell composite parameter (SCP) and the effective-layer significant tornado parameter (STP) favored right-moving supercells that produced significant tornadoes, as opposed to weak tornadoes or supercells that produced only significant hail or damaging winds. Additionally, mesocyclone strength tended to increase with increasing SCP for supercells, and STP tended to increase as tornado damage class ratings increased. The findings underscore the importance of convective mode (discrete or cluster supercells), mesocyclone strength, and near-storm environment (as represented by large values of STP) in consistent, real-time identification of intense tornadoes.