Field Squeeze Operators in Optical Cavities with Atomic Ensembles

Abstract
We propose a method of generating unitarily single and two-mode field squeezing in an optical cavity with an atomic cloud. Through a suitable laser system, we are able to engineer a squeeze field operator decoupled from the atomic degrees of freedom, yielding a large squeeze parameter that is scaled up by the number of atoms, and realizing degenerate and nondegenerate parametric amplification. By means of the input-output theory we show that ideal squeezed states and perfect squeezing could be approached at the output. The scheme is robust to decoherence processes.