Tracking control with adaption of kites

Abstract
A novel tracking paradigm for flying geometric trajectories using tethered kites is presented. It is shown how the differential-geometric notion of turning angle can be used as a one-dimensional representation of the kite trajectory, and how this leads to a single-input single-output tracking problem. Based on this principle a Lyapunov-based non-linear adaptive controller is developed that only needs control derivatives of the kite aerodynamic model. The resulting controller is validated using simulations with a point-mass kite model.

This publication has 9 references indexed in Scilit: