The cupric site in nitrous oxide reductase contains a mixed‐valence [Cu(II),Cu(I)] binuclear center: A multifrequency electron paramagnetic resonance investigation

Abstract
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the assignment of the low field g value at 2.18 consistent with the seven line pattern observed at 9.31 GHz, 10 K. S-band spectra at 20 K are better resolved than the X-band spectra recorded at 10 K. The features observed at 2.4, 3.4, 9.31 and 35 GHz are explained by a mixed-valence [Cu(1.5)..Cu(1.5)] S= 1/2 species with the unpaired electron delocalized between two equivalent Cu nuclei. The resemblance of the N2OR S-band spectra to the spectra for the EPR-detectable Cu of cytochrome c oxidase suggests that the S-band spectrum for cytochrome c oxidase measured below 30 K may also contain hyperfine splittings from two approximately equivalent Cu nuclei.