Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites.

Abstract
Visna virus gene expression is highly restricted in monocytes but is induced by monocyte-macrophage differentiation in vivo. Deletion and linker-scanning mutants, gel shift assays, and DNase I footprinting were used to identify sequences in the visna virus long terminal repeat involved in the developmental regulation of gene expression in the U937 monocytic cell line. We found that an AP-1 and an AP-4 binding site were critical for basal activity and that the AP-1 site was required for phorbol ester-inducible gene expression. These results suggest that cellular factors that interact with AP-1 sites are involved in the developmental regulation of visna virus gene expression in macrophages.