Structure and Thermomechanical Properties of Partially Stabilized Zirconia in the CaO‐ZrO2 System

Abstract
Partially stabilized zirconia (PSZ) ceramics in the system CaO-ZrO2 were characterized. The microstructure, as revealed by optical microscopy, consisted of grains of pure ZrO2 distributed in a matrix of fully stabilized material. Electron microscopy showed that the matrix grains have a complex substructure of 1000-Å domains of cubic and monoclinic ZrO2. The grains appeared to fit Ubbelohde's concept of a hybrid single crystal. Evidence obtained indicated that the substructure provides an effective stress-relieving mechanism during thermal shock. It is proposed that initiation of phase inversion in pure ZrO2 domains, even at subtransition temperatures (by thermal stresses), creates an extremely large microcrack density. On the basis of Hasselman's thermal-shock criterion, only quasi-static crack propagation occurs during thermal shock of PSZ; evidence is presented to support this concept.

This publication has 12 references indexed in Scilit: