Abstract
Hippocampal GABAergic interneurons show diverse molecular and morphological properties. The functional significance of this diversity for information processing is poorly understood. Here we show that cholecystokinin (CCK)-expressing interneurons in rat dentate gyrus release GABA in a highly asynchronous manner, in contrast to parvalbumin (PV) interneurons. With a gamma-frequency burst of ten action potentials, the ratio of asynchronous to synchronous release is 3:1 in CCK interneurons but is 1:5 in parvalbumin interneurons. N-type channels trigger synchronous and asynchronous release in CCK interneuron synapses, whereas P/Q-type Ca2+ channels mediate release at PV interneuron synapses. Effects of Ca2+ chelators suggest that both a long-lasting presynaptic Ca2+ transient and a large distance between Ca2+ source and sensor of exocytosis contribute to the higher ratio of asynchronous to synchronous release in CCK interneuron synapses. Asynchronous release occurs at physiological temperature and with behaviorally relevant stimulation patterns, thus generating long-lasting inhibition in the brain.