Abstract
The quantum Zakharov system is described in terms of a Lagrangian formalism. A time-dependent Gaussian trial function approach for the envelope electric field and the low-frequency part of the density fluctuation leads to a coupled, nonlinear system of ordinary differential equations. In the semiclassical case, linear stability analysis of this dynamical system shows a destabilizing role played by quantum effects. Arbitrary values of the quantum effects are also considered, yielding the ultimate destruction of the localized, Gaussian trial solution. Numerical simulations are shown for both the semiclassical and the full quantum cases.