Modeling and Interpretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and perspectives

Abstract
Recent advances in scattering modeling and model-based decomposition theorem were reviewed. The notable achievements include orientation compensation processing, nonnegative eigenvalue constraint, generalized scattering models, complete information utilization, full-parameter inversion strategy, and the polarimetric-interferometric decomposition scheme. These advances contribute to make scattering models more adaptive, better fit observations and guarantee physically meaningful decomposition solutions. The key features of these advances have been summarized. Performance evaluation and further development perspectives were also discussed. One promising way is to fuse multiple data to better model scattering mechanisms, such as the polarimetric-interferometric modeling attempts. Besides, with the progress in PolSAR sensors, imaging modes (e.g., bistatic, hybrid-polarization and multi-incident-angle modes) and application requirements, the development of specific scattering mechanism interpretation techniques, multiangular decomposition, and compact/hybrid decomposition techniques are also highly preferred.

This publication has 28 references indexed in Scilit: