Exchange-bias effect in Fe/Cr(211) double superlattice structures

Abstract
Shifted hysteresis loops characteristic of the exchange-bias effect between a ferromagnet (F) and an antiferromagnet (AF) are demonstrated in “double-superlattice” structures. Utilizing the well-established oscillatory interlayer exchange coupling in Fe/Cr, we have constructed [Fe/Cr]AF/Cr/[Fe/Cr]F double superlattices where Fe/Cr superlattices with appropriate Cr-spacer thickness represent the F and the AF. The double superlattices are (211)-oriented epitaxial films sputter grown on single-crystal MgO(110) substrates. The AF/F interface is coherent compared to conventional exchange-bias interfaces consisting of dissimilar AF and F phases. Magnetization results show that AF/F exchange coupling affects the nucleation of reverse magnetic domains, and that the magnitude of the exchange-bias field is given directly by the classic formula for collinear spin structures. The collinear spin distribution is confirmed by polarized neutron reflectivity.

This publication has 26 references indexed in Scilit: