Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury

Abstract
C-Src has been shown to activate NF-κB (nuclear factor κB) following H/R (hypoxia/reoxygenation) by acting as a redox-dependent IκBα (inhibitory κB) tyrosine kinase. In the present study, we have investigated the redox-dependent mechanism of c-Src activation following H/R injury and found that ROS (reactive oxygen species) generated by endosomal Noxs (NADPH oxidases) are critical for this process. Endocytosis following H/R was required for the activation of endosomal Noxs, c-Src activation, and the ability of c-Src to tyrosine-phosphorylate IκBα. Quenching intra-endosomal ROS during reoxygenation inhibited c-Src activation without affecting c-Src recruitment from the plasma membrane to endosomes. However, siRNA (small interfering RNA)-mediated knockdown of Rac1 prevented c-Src recruitment into the endosomal compartment following H/R. Given that Rac1 is a known activator of Nox1 and Nox2, we investigated whether these two proteins were required for c-Src activation in Nox-deficient primary fibroblasts. Findings from these studies suggest that both Nox1 and Nox2 participate in the initial redox activation of c-Src following H/R. In summary, our results suggest that Rac1-dependent Noxs play a critical role in activating c-Src following H/R injury. This signalling pathway may be a useful therapeutic target for ischaemia/reperfusion-related diseases.

This publication has 40 references indexed in Scilit: