Human Spermatogenic Failure Purges Deleterious Mutation Load from the Autosomes and Both Sex Chromosomes, including the Gene DMRT1

Abstract
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04–1.16], p−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], pDMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes. Infertility is a disease that prevents the transmission of DNA from one generation to the next, and consequently it has been difficult to study the genetics of infertility using classical human genetics methods. Now, new technologies for screening entire genomes for rare and patient-specific mutations are revolutionizing our understanding of reproductively lethal diseases. Here, we apply techniques for variation discovery to study a condition called azoospermia, the failure to produce sperm. Large deletions of the Y chromosome are the primary known genetic risk factor for azoospermia, and genetic testing for these deletions is part of the standard treatment for this condition. We have screened over 300 men with azoospermia for rare deletions and duplications, and find an enrichment of these mutations throughout the genome compared to unaffected men. Our results indicate that sperm production is affected by mutations beyond the Y chromosome and will motivate whole-genome analyses of larger numbers of men with impaired spermatogenesis. Our finding of an enrichment of rare deleterious mutations in men with poor sperm production also raises the possibility that the slightly increased rate of birth defects reported in children conceived by in vitro fertilization may have a genetic basis.