Abstract
Computed tomography (CT) use has increased dramatically over the past several decades.1 The total number of CT examinations performed annually in the United States has risen from approximately 3 million in 1980 to nearly 70 million in 2007.2,3 Integrating CT into routine care has improved patient health care dramatically, and CT is widely considered among the most important advances in medicine. However, CT delivers much higher radiation doses than do conventional diagnostic x-rays. For example, a chest CT scan typically delivers more than 100 times the radiation dose of a routine frontal and lateral chest radiograph.4,5 Furthermore, radiation exposure from CT examinations has also increased, in part due to the increased speed of image acquisition allowing vascular, cardiac, and multiphase examinations, all associated with higher doses. Thus, greater use of CT has resulted in a concurrent increase in the medical exposure to ionizing radiation.2,6