Abstract
Desferoxamine (DFO) involvement in several peroxidative systems was studied. These sytems included: a) membranal lipid peroxidation initiated by H2O2-activated metmyoglobin (or methemoglobin); b) phenol-red oxidation by activated metmyoglobin or horseradish peroxidase (HRP): c) β-carotene-linoleate couple oxidation stimulated by lipoxygenase or hemin. Desferrioxamine was found to inhibit all these systems but not ferrioxamine (FO). Phenol-red oxidation by H202-horseradish peroxidase was inhibited competitively with DFO. Kinetic studies using the spectra changes in the Soret region of metmyoglobin suggest a mechanism by which H202 reacts with the iron-heme to form an intermediate of oxy-ferryl myoglobin that subsequently reacts with DFO to return the activated compound to the resting state. These activities of DFO resemble the reaction of other electron donors.