p38 Mitogen-Activated Protein Kinase Contributes to the Diminished Aortic Contraction by Endothelin-1 in DOCA-Salt Hypertensive Rats

Abstract
We investigated whether the diminished contractile responsiveness to endothelin-1 (ET-1) is associated with the altered activation of mitogen-activated protein kinase (MAPK) in aortic smooth muscles from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. ET-1 dose-dependently increased contractions in aortic smooth muscle strips, and the contractions were significantly attenuated in tissues from DOCA-salt hypertensive rats compared with those from sham-operated rats. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was elevated by ET-1, with the magnitude and time-course being similar between strips. Although ET-1 also increased the phosphorylation of p38 MAPK in both strips, the increment was markedly lower in the strips from DOCA-salt hypertensive rats compared with sham-operated controls. 5-Hydroxytryptamine (5-HT) increased vascular contraction and phosphorylation of both MAPK isoforms; these were greater in DOCA-salt hypertensive rats than in sham-operated rats. ET-1 also increased the phosphorylation of caldesmon, an actin-binding protein, in sham-operated and DOCA-salt hypertensive rats. However, the increment was markedly lower in the strips from DOCA-salt hypertensive rats compared with sham-operated controls. The phosphorylation of MAPK isoforms and caldesmon elevated by ET-1 was inhibited by PD098059, an inhibitor of ERK1/2 kinase, and SB203580, an inhibitor of p38 MAPK, respectively. These results suggest that ET-1 and 5-HT induce contraction by activating the MAPK pathway in rat aortic smooth muscle and that the diminished responsiveness to ET-1 in the DOCA-salt hypertensive rat may be, in part, mediated by the decrease of caldesmon phosphorylation after the decreased activation of p38 MAPK.