A Comparative Study on Various Ductile Crack Formation Criteria

Abstract
Various fracture criteria, based on different assumptions and different mechanical models, have been proposed in the past to predict ductile fracture. The objective of this study is to assess their effectiveness and accuracy in a wide range of process parameters. A series of tests on 2024-T351 aluminum alloy, including upsetting tests and tensile tests is carried out. It is found that none of the existing fracture criteria give consistent results. Two totally different fracture mechanisms are clearly observed from microfractographs of upsetting and tensile specimens. This observation confirms that it is impossible to capture all features of ductile crack formation in different stress states with a single criterion. It is shown that different functions are necessary to predict crack formation for different ranges of stress triaxiality. Weighting functions in a wide range of stress states can be obtained by determining the fracture locus in the space of equivalent strain to fracture and stress triaxiality.