The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3with possible superconductivity atTc= 11 K

Abstract
We report on the synthesis of single crystals of BaFe(2)Se(3) and study their crystal and magnetic structures by means of synchrotron single-crystal x-ray and neutron powder diffraction. The crystal structure has orthorhombic symmetry and consists of double chains of FeSe(4) edge connected tetrahedra intercalated with barium. Below 240 K, long range spin-block checkerboard antiferromagnetic order is developed. The magnetic structure is similar to one observed in A(0.8)Fe(1.6)Se(2) (A = K, Rb or Cs) superconductors. The crystals exhibit a transition to the diamagnetic state with an onset transition temperature of T(c) ∼ 11 K. Though we observe FeSe as an impurity phase (<0.8% mass fraction) it is not likely that the diamagnetism is attributable to the FeSe superconductor, which has T(c) ≈ 8.5 K.