Abstract
Alternative splicing is a regulatory process of gene expression based on the flexibility in the selection of splice sites. In this manuscript we present the characterisation of an alternative splicing of the NF1 pre-mRNA induced by cold-shock conditions. We demonstrate that the accuracy of the splicing mechanism was perturbed after keeping samples for a short period of time at room temperature, resulting in the insertion of a 31-bp cryptic exon between exons 4a and 4b of the NF1 mRNA. This alternative splicing is not cell type specific and is not induced by other stress conditions such as heat shock or hyper-osmolarity. The alternative spliced mRNA is efficiently transported to the cytoplasm and it is proven to belong to the poly A(+)mRNA fraction. Previous misleading interpretations about this transcript, together with our finding relating its presence to cold shock and not to the NF1 disease, strongly indicate that this phenomenon should be taken into account in genetic testing when RNA methodology is used for mutation detection. This is the first description of an alternative splicing induced by cold shock in a human pre-mRNA and should provide further insights into the factors that control alternative splicing.