Biodegradation of cyclic nitramines by tropical marine sediment bacteria

Abstract
Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The goal of the present study was to determine microbial degradation of RDX and HMX in a tropical marine sediment sampled from a coastal UXO field in the region of Oahu Island in Hawaii. Sediment mixed cultures growing in marine broth 2216 (21°C) anaerobically mineralized 69% or 57% (CO2, 25 days) of the total carbon of [UL-14 C]-RDX (100 μM) or [UL-14 C]-HMX (10 μM), respectively. As detected by PCR-DGGE, members of γ-proteobacteria (Halomonas), sulfate-reducing δ-proteobacteria (Desulfovibrio), firmicutes (Clostridium), and fusobacterium appeared to be dominant in RDX-enrichment and/or HMX-enrichment cultures. Among 22 sediment bacterial isolates screened for RDX and HMX biodegradation activity under anaerobic conditions, 5 were positive for RDX and identified as Halomonas (HAW-OC4), Marinobacter (HAW-OC1), Pseudoalteromonas (HAW-OC2 and OC5) and Bacillus (HAW-OC6) by their 16S rRNA genes. Sediment bacteria degraded RDX to N2O and HCHO via the intermediary formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine. The present findings demonstrate that cyclic nitramine contaminants are likely to be degraded upon release from UXO into tropical marine sediment.

This publication has 22 references indexed in Scilit: